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The shock-wave gas flow in a closed cylindrical tube caused by harmonic vibrations of a flat piston has been
considered. The solution has been obtained by means of numerical integration of the system of nonstationary
equations of a narrow channel written in divergent form. A scheme of the 1st order of time accuracy and a
scheme of the 2nd order of space accuracy have been used. The regularities in the behavior of the dynamic
and temperature boundary layers for the unstable regime of gas flow in the tube at various moments of the
cycle have been analyzed.

The wave gas flow in a closed tube has been the subject of numerous investigations. A certain systematization
of the information is given in monographs [1] and [2]; recent results are presented in [3]. The above-mentioned works
contain reviews of not only the experimental studies but also various mathematical models that were used to describe
the circle of phenomena in question. The range of their applicability is given.

It is stated that, at present, numerical simulation of a nonstationary gas flow within the framework of the
complete system of Navier–Stokes equations is only possible for relatively short channels. Examples are the recent
studies [4] and [5]. For channels having large elongations, adequate account of the transfer along the channel by
means of the diffusion process within the framework of a numerical simulation seems to be problematic. Therefore,
particular forms of asymptotic approximation are used. In particular, as the description becomes less complete com-
pared to the simulation within the framework of the complete system of Navier–Stokes equations, the so-called para-
bolic approximation [6], where only the processes of longitudinal diffusion are neglected, is distinguished. The next
model in the hierarchy is the parabolized approximation [7]. Here, besides neglecting the diffusion along the channel,
the pressure field is represented as the sum of two functions, one of which — the one used to describe the pressure
gradient in the axial direction — depends only on this coordinate. This technique permits excluding the mutual influ-
ence of the longitudinal and transverse pressure gradients. Despite the simplifications compared to the complete system
of Navier–Stokes equations, the employment of these models to describe the nonstationary processes of gas oscillation
in a tube has not yet been described in the literature.

Complete refusal to take into account the transverse pressure gradient leads to a system of a narrow channel
equations [8]. Examples of the successful use of such a system of equations for oscillatory fluid motion in a tube are
the investigations described in [9] and [10]. The conventional hierarchical list of mathematical models is closed by the
quasi-one-dimensional approach to the description of the gas flow in the channel.

In turn, already at the stage of problem formulation, each of the above models admits reduction in taking into
account the properties of the gas compressibility. Moreover, when the influence of the flow rate on the gas state is
completely taken into account, one distinguishes between the hyposonic approximation and the incompressible liquid
approximation.

The applicability limits of a particular approximation are primarily determined by the channel geometry and
the flow conditions, while for the parabolic and parabolized Navier–Stokes equations a restriction is imposed only on
the value of the Reynolds number, and for the system of narrow channel equations an additional requirement is the
smoothness of the change in the functions on the channel wall. This requirement is applied to the value of the local
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slope of the wall element with respect to the direction of the channel axis, the distribution of the mass transfer through
the tube surface, and the dependence of the thermal state of the tube wall along the channel. For the quasi-one-dimen-
sional approximation model, apart from the above limitations, a priori information on the dependence of velocity and
temperature profiles in the channel on the flow conditions is needed. Such dependences have been established for
steady-state regimes of gas flow. Therefore, simulation by the quasi-one-dimensional model finds no application be-
yond the scope of the quasi-stationary flow. In the present paper, we concentrate on the narrow channel approximation.

Consider the problem on the wave gas flow, for definiteness — air flow, in a cylindrical tube of diameter D
and length L. One end of the tube (the left-hand one) is plugged and on the other (right-hand) end there is a flat pis-
ton executing oscillations by the harmonic law with amplitude h and oscillation frequency ω.

For the problem formulation under consideration, we can distinguish three dynamic similarity numbers — the
Reynolds number Re, Stokes number St, and Mach number M — and two thermal similarity numbers — the Prandtl
number Pr and the temperature factor Θ, which define the whole diversity of regimes of gas flow in the tube. Let us
express the similarity numbers in terms of the problem parameters as follows:

Re = 
hωD

ν
 ,   St = D √ω

ν
 ,   M = 

hω
c

 ,   Pr = 
ν
a

 ,   Θ = 
T0

Tw
 .

Three important points that take place when the gas is moving under the action of piston oscillations are note-
worthy. First, at a circular frequency multiple of the quantity πcL−1 in the system there occurs excitation of free os-
cillations of the gas column and the phenomenon of resonance independent of the piston oscillation amplitude is
observed. Second, beginning with a certain level of the oscillation amplitude and simultaneously at a near-resonance
frequency range, the sinusoidal behavior of the functions along the channel is replaced by discontinuity solutions. The
transition to discontinuity solutions is described only in experimental works. The region of reverse transition from the
shock waves to the shock-free wave gas flow has been established experimentally only for situations associated with
the deviation of the oscillation frequency from the resonance frequency. The threshold oscillation amplitude, when the
shock wave still exists, has not been investigated experimentally. Theoretical works on this topic are completely ab-
sent. Third, it has been established that for flows without discontinuities at Reynolds numbers exceeding 700St the
laminar regime of gas flow is replaced by the turbulent one. Note that in the case of reciprocating motion of the me-
dium the critical Reynolds number considerably exceeds its value for the same tube under stationary motion. The tran-
sition from the laminar form of motion to the turbulent one has been described in a number of experimental works.
However, the mechanism of the transition in the form of theoretical dependences has not been established.

The gas oscillation in a tube has received the best study for M << 1. In this case, the equations describing
the gas behavior become linear. Any finite value of the Mach number leads to a nonlinear system of equations. Either
direct linearization of this system or construction of the solution in the form of a series, where the Mach number is
an expansion parameter, are possible. Here the calculation of the gas oscillations at the resonance frequency is of in-
terest by virtue of the fact that a satisfactory solution cannot be obtained in terms of analytic representation. Lineari-
zation of the system of nonlinear equations leads to equations that have a solution at small oscillations when no shock
wave propagating along the channel is formed. Examples of analytic solutions as applied to the small-amplitude wave
motion of gas are given in [11] and [12]. Theoretical representation of the solution in the form of a series is also pos-
sible when a shock wave is formed, but in this case it will be required to retain a large number of series components
for representing the discontinuous behavior of the function. The present investigation gives a technique for calculating
the gas flow without imposing restrictions on the values of the Mach number and permits describing this flow with a
discontinuity in the function behavior.

For numerical simulation of the gas flows in a tube, let us make use of the system of nonstationary narrow-
channel equations written in the divergent form

∂
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The process of molecular transfer is described by the Newton law and the process of heat conduction — by the
Fourier law

τ = µ 
∂u

∂r
 ,   q = − λ 

∂T

∂r
 . (4)

The relation between the gas-dynamic functions of the gas state in the elementary case is given in the form of the
Mendeleev–Clapeyron law p = ρRT and the law for a calorically perfect gas Cv = const (pressure and temperature in-
dependence of the specific heat conductivity of the gas).

As boundary conditions for the gas velocity and temperature on the tube axis, we took the symmetry condi-
tion, and on the tube wall — the adhesion condition and the given temperature value. On the end surfaces, including
the moving piston surface, the sealing and heat insulation conditions were given.

In analyzing cyclic systems, the initial conditions are immaterial, as a rule. In the given case, the solution was
constructed from the state of a stationary gas with a temperature equal to the wall temperature. The piston was at the
upper dead point (UDP).

To solve the system of equations (1)–(3), we employed an explicit–implicit scheme using a form of repre-
sentation of the system of narrow-channel equations that is divergent with respect to the vector of the main variables
and permits describing flows with discontinuities of the gas-dynamic functions. The derivatives in differentiating in the
longitudinal direction were determined on the known lime layer, and in differentiating in the transverse direction they
were determined implicitly. The region was discretized by the control volume approach. The flow values in the longi-
tudinal direction through the control cell boundaries were determined by the Godunov method for solving the Riemann
problem on the arbitrary discontinuity decay according to [13]. Approximation of the derivatives in the transverse di-
rection was carried out by means of standard central-difference relations. This scheme sustains the first order of time
approximation and an order not lower than the second one of space approximation. The algorithm of numerical inte-
gration of the system of equations (1)–(3) is described in more detail in [14].

In solving the problem, a grid uniform in z and thickened in r towards the channel wall is used. To provide
thickening of the grid nodes towards the channel wall, we used the transformation of coordinates following the ap-
proach of [15]. The calculation was made on a fixed number of nodes. Therefore, the grid was rearranged in the lon-
gitudinal direction in accordance with the piston motion.

The calculation has been made for the following dimensions of the tube: L = 3 m; D = 4.0⋅10−3 m. The cir-
cular vibration frequency of the piston was ω = 330.5846 sec−1 and corresponded to the first resonance harmonic of
acoustic vibrations. The vibration amplitude of the piston was h = 0.3 m. The initial state of the gas p = 0.1 MPa, T
= 300 K. The thermal state of the tube wall corresponded to the isothermal conditions of the gas flow with a tem-
perature equal to Tw = 300 K. For numerical representation of the solution, we used a grid of size 301 × 31 nodes.
The time integration step was chosen to be equal to 3.0⋅10−6 sec.

The chosen geometric characteristics of the tube and the parameters of the gas flow exciter correspond to the
laminar regime of the gas flow in it with the formation of the shock-wave structure of the flow. A small value of the
Stokes number leads to a fast dynamic stabilization of the structure of a flow, from which the nonviscous flow core
is practically absent, and a small cross section of the tube leads to a fast temperature stabilization. The latter is most
important because only the termination of the formation of radial temperature gradients throughout the tube cross sec-
tion provides complete energy balance in the system. This balance consists of the fact that in the cycle time transfor-
mation of the energy obtained from the moving piston to the energy of the gas compressed in the shock wave occurs
with simultaneous heat removal by means of the heat transfer to the tube wall. In particular, after 20 cycles of piston
oscillation the work done by it on the gas during a cycle differs from the quantity of heat removed through the tube
wall by less than 0.1%. This points to the fact that the gas oscillations in the system have become stable.

Some of the integral characteristics of the cycle are presented in Fig. 1. The symbol U marks the curve of
the current rate of motion of the piston, and N and Q correspond to the power at which the piston does work on the
gas and the power of the length-total thermal flow through the tube wall. As one would expect, the heat transfer maxi-
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mum falls at the moment of the greatest compression of the gas in the tube with a small phase lag of oscillations.
Oscillations of the volume-average gas pressure and the volume-average gas temperature lag behind the piston oscilla-
tions by an angle of π/2. It may be stated that after the start of the system from the UDP the average temperature
during the first two cycles decreased, but subsequently its increase and stabilization at 304 K with an oscillation am-
plitude of 9 K occurred. In so doing, the average pressure in the tube increased by 10% with an oscillation amplitude
of 11% of the average value. Such a displacement of the thermodynamic equilibrium point is due to the periodic
change in the gas-column volume and the temperature conditions on the tube wall. The observed behavior of the
power curve as the piston is doing work on the gas finds an explanation in analyzing the local characteristics of the
system.

The current values of the local hydrodynamic variables are determined by their dependence on the oscillation
frequency. Since gas oscillations occur at the near-resonance frequency, the values of the local characteristics differ
widely from the average-volume ones. In particular, the average temperature in the vicinity of the stationary end of the
tube is 315 K with an oscillation amplitude of 45 K. The average pressure at the tube end is 0.11 MPa, but because
of the time asymmetry of the oscillation process the pressure maximum is 0.232 MPa and the minimum is 0.58 MPa.
The pattern of the pressure oscillation near the piston surface is characterized by the fact that, with respect to the pis-
ton oscillations, the phase shift is about 180o, i.e., pressure oscillations occur out of phase. As a result of this, the
power with which the piston does work on the gas has a considerable amplitude asymmetry about the time axis at dif-
ferent values of the cycle phase (1).

Let us illustrate the behavior of the gas-dynamic functions at characteristic points of the tube. Curves 1–5 in
Fig. 1 correspond to equidistant points along the tube length, with the first monitoring point coinciding with the tube
end and the fifth point coinciding with the piston surface. Figure 2 shows the time dependences of: (a) pressure (the
current pressure is referred to the value at the initial instant of time), (b) velocity averaged over the tube cross section,
(c) temperature averaged over the tube cross-section, and (d) specific thermal flux.

Analysis of the pressure–time diagram shows that the total amplitude of pressure oscillations in different cross
sections of the tube differs but slightly, despite the considerably viscous character of the medium flow. At monitoring
points 2–4, gas compression in the shock wave occurs twice as it propagates in opposite directions, and at points 1
and 5 single compression and reflection of the shock wave from the stationary end and the moving piston are ob-
served. In the diagrams showing the dependence of the cross-section-average velocity on the longitudinal coordinate
(Fig. 2b), the position of the shock wave is given as a sharp front of the change in the function, and its reflection
from the end surfaces of the tube — as bursts disturbing the smooth behavior of the function. From the graph of vari-
ations in the cross-section-average temperature of the gas, it is seen that the local values of the function differ consid-
erably from the tube wall temperature, and the largest oscillation amplitude falls at the end surfaces of the tube. Near
the stationary end the absolute temperature maximum is registered, and near the piston surface, at the phase of rare-
faction wave formation, the absolute minimum is observed. Variations in the gas temperature in the tube cross sections
lead to interesting mechanisms of the thermal flow into the tube wall. As follows from Fig. 1, at the chosen parame-

Fig. 1. Integral characteristics of the cycle. U, m/sec; N, Q, W; t, sec.
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ters of the problem, the total thermal flux through the tube wall is positive at all times, i.e., from the gas the heat is
transferred to the wall. In so doing, the dominant contribution in this transfer is made by the thermal flux immediately
after the moving shock wave. However, the structure of the temperature boundary layer is such that at corresponding
instants of time in the other parts of the tube before the shock wave the temperature of the tube wall exceeds the gas
temperature in the vicinity of the wall; therefore, the thermal flux is negative. Under the conditions of a time-alternat-
ing thermal flux, where at certain instants of time the temperature profile in the tube cross section has a minimum,
correct modeling of the thermal state for the material of the tube wall is necessary. In particular, for correct compari-
son of calculated and experimental results it is necessary to consider the boundary conditions on the tube wall as a
solution of the problem of conjugate heat exchange. It may be noted that during the cycle time, in the region of the
end, heat removal occurs, and in the region of the piston, vice versa, the gas is heated from the tube wall. Therefore,
for a finite thickness of the tube wall axial thermal flows in the wall material should arise.

The results of the calculation reveal the following features of the shock-wave gas flow in a closed tube with
a harmonic near-resonance law of piston oscillation. The thickness of the dynamic nonstationary boundary layer on the
tube wall is determined by the piston oscillation frequency and the gas viscosity. Depending on the value of the
Stokes number, the formation of a nonviscous flow core in the vicinity of the tube axis is possible. The nonstationary
temperature boundary layer has a much more complex structure and covers the whole cross section of the tube. There-
fore, the stabilization times of the structure of the dynamic and temperature boundary layers are different. Thus, for
the investigated gas flow the known Reynolds analogy is not fulfilled.

Fig. 2. Changes in the values of the gas-dynamic function at the monitoring
points in a cycle. p, dimensionless; U, m/sec; T, K; q, kW/m2; t, sec.
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For the given characteristics of the system, the formation of temperature stratification of the gas is observed
(in the vicinity of the plugged end of the tube the gas is hotter compared to the gas in the vicinity of the piston). This
leads to the formation of thermal flows in the axial direction.

NOTATION

a, thermal diffusivity of the gas; c, sound velocity; Cv, specific heat capacity at a constant volume; D, tube
diameter; E = CvT + (u2 + v2)/2, total specific energy; H = E + p ⁄ ρ, total specific enthalpy; h, oscillation amplitude of
the piston; L, tube length; M, Mach number; N, power with which the piston does work on the gas; p, pressure; Pr,
Prandtl number; Q, heat-transfer power between the gas and the tube wall; q, specific thermal flow; r, radial coordi-
nate; R, gas constant; Re, Reynolds number; St, Stokes number; T, temperature; t, time; U, rate of motion of the pis-
ton; u and v, axial and radial components of the velocity vector; z, axial coordinate; λ, heat-conductivity coefficient of
the gas; µ and ν, dynamic and kinematic viscosity coefficients; Θ, temperature factor; ρ, density; τ, friction stress; ω,
oscillation frequency of the piston. Subscripts: 0 and w, values of the functions on the channel axis and wall, respec-
tively.
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